1.有监督学习和无监督学习的区别:
1.1概述:
-
-
- 有监督学习是知道变量值(数据集)和结果(已知结果/函数值),但是不知道函数样式(函数表达式)的情况下通过machine learning(ML)获得正确的函数表达式(算法)。
- 有监督学习的例子,实例一:
- 有监督学习的例子,实例二:
- 小结:综上所述,有监督学习又可以分成回归问题和分类问题。回归问题的结果集取值是连续的如上述的例子中房子的真实售价是连续的,所以房价问题是有监督学习中的回归问题,分类问题的结果集取值是离散的,如肿瘤是良性还是恶性。
- 有监督学习的例子,实例一:
- 无监督学习是只知道变量值,不知道函数关系式也不知道结果值的情况下通过ML获得正确函数(算法)。Unsupervised learning allows us to approach problems with little or no idea what our results should look like.也就是说,无监督学习中只有一个数据集,其他什么都不知道,我们甚至不知道what our results should look like 。Unsupervised Learning可以从这个给定的数据集中找到某种规律(某种结构)。 例如,
- 无监督学习的例子,实例二: 。 , 。
- , 。
- , , , 。
- 有监督学习是知道变量值(数据集)和结果(已知结果/函数值),但是不知道函数样式(函数表达式)的情况下通过machine learning(ML)获得正确的函数表达式(算法)。
-
1.2下面一些文章对这个话题解释得较为详细:
1):
2)